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a b s t r a c t

One of the most widely used methods for probability encoding in decision analysis uses binary
comparisons (choices) between two lotteries: one that depends on the values of the random variable
of interest and another that is contingent on an external reference chance device (typically a probability
wheel). This note investigates the degree towhich differences in probabilityweighting functions between
the two types of events could affect the practice of subjective probability encoding. We develop a
general methodology to investigate this question and illustrate it with two popular probability weighting
functions over the range of parameters reported in the literature. We use this methodology to (a) alert
decision analysts and researchers to the possibility of reversals, (b) identify the circumstances under
which overt preferences for one lottery over the other are not affected by the weighting function,
(c) document the magnitude of the differences between choices based on probabilities and their
corresponding weighting functions, and (d) offer practical recommendations for probability elicitation.

© 2011 Elsevier Inc. All rights reserved.
The elicitation of representative probability distributions of
continuous variables is a fundamental step in decision analysis
and, as such, has engendered a substantial literature (see O’Hagan
et al., 2006; VonWinterfeldt & Edwards, 1986;Wallsten&Budescu,
1983, for partial reviews). Spetzler and Staël von Holstein (1975)
distinguished between direct and indirect elicitation methods.
Direct methods ask the judges to state, or identify by some other
means (such as graphs or sliders), the probability distribution
of the random variable of interest, X . Indirect methods, the
focus of this note, infer the correspondence between values of
X and their probabilities from comparative judgments and/or
choices made by the Decision Makers (DMs). For example, in a
meteorological context, one could ask: ‘‘Is it more likely that the
average temperature next year at a given location will be (a)
between 20° and 23° or (b) between 24° and 25°?’’ By asking
a series of questions of this format, it is possible to trace the
probability distribution of the variable of interest. In general,
indirectmethods are consideredmore natural, and less demanding
cognitively.

Often the comparisons involve lotteries based on external
chance devices with well calibrated probabilities. The most
popular device is a probability wheel with two sectors of different
colors (say, Orange and Blue) whose relative size is not explicitly
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stated but can be inferred from their relative area (see discussion
of the probabilitywheel and the ‘‘reference experiment’’ in Chapter
5 of French, 1988). The judge asked ‘‘Is it more likely that (a) the
average temperature next year at a given location will be between
20° and 23°, or (b) that the wheel will land on the orange sector
when it is spun?’’ When eliciting distributions of a continuous
variable, the target event is often specified in the context of its
cumulative probability distribution. For example, in the process
of eliciting a dose–response curve a judge could be asked ‘‘Is it
more likely that (a) less than 10% of the at-risk population will
be adversely affected if the concentration of a pollutant exceeds
C particles/mm3, or (b) that the wheel will land on the orange
sector when it is spun?’’ (e.g. Wallsten, Forsyth, & Budescu, 1983;
Whitfield & Wallsten, 1989). All our arguments in this note apply
equally to both cases so, without any loss of generality, we will
refer exclusively to cumulative probabilities. These judgments
are overt realizations of the binary relation (weakly) more likely
than and, if the judgments obey certain behavioral axioms (see
e.g. French, 1988, Chapter 6), they can be mapped into (unique)
subjective probabilities.

Alternatively, these comparisons can be framed as binary choi-
ces involving a positive outcome, O. This has the advantage of
adding a proper incentive for the judge as his/her choices deter-
mine the eventual payoffs. Thus, the judge could be asked ‘‘Would
you prefer to bet on a lottery that pays $100 if (a) the total amount
of precipitation in your town this month is less than 6 cm, or (b)
the wheel will land in the orange sector when it is spun?’’

These choices are overt realizations of the binary relation is
(weakly) preferred over and, if the judge’s preferences obey the
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behavioral axioms of the Subjective Expected Utility model (Sarin
& Wakker, 1997; Savage, 1954), they can be mapped into utilities
and (unique) probabilities. More precisely, we infer that:

Lottery on Event is (weakly) preferred to Lottery on Wheel
iff
SEU (Lottery on Event) ≥ SEU(Lottery on Wheel).

Kadane and Winkler (1988) discuss the effects of non-linear
utility functions on several probability elicitation procedures and
the corresponding separation of beliefs from expected utility
formulations. They show that when the judge has a ‘‘stake’’ in
the outcome of the variable of interest – his/her distribution of
wealth is correlated with the variable being assessed – non-linear
utility functions do not allow the separation. Here the two lotteries
are independent of the actual wealth distribution, and involve the
same outcome, O. It is reasonable to assume that the utility is
invariant over (independent of) the source of the prize (wheel or
event), and the inference can now be further simplified (for an
excellent review of the composition of risk preference and belief,
see Wakker (2004)). The relative (subjective) likelihood of the two
events can be inferred from the revealed preferences between the
two gambles as,

Lottery on Event is (weakly) preferred to Lottery on Wheel
iff
SP (Event) ≥ SP (Wheel).

This logic applies to any pair-wise comparison (i.e., between
any setting on the wheel and any value of the target variable),
and it provides the theoretical underpinning for various sequences
of choices used to determine the full distribution of the random
variable, X . The two most popular sequences (encoding methods)
are fixed probability and fixed variable value (see Spetzler & Staël
von Holstein, 1975; Abbas, Budescu, Yu, & Haggerty, 2008). The
Fixed Probability method uses a fixed setting on the probability
wheel and asks judges for the value of the variable whose
cumulative probability corresponds to the wheel setting. The
second approach assesses the fractiles using a fixed value of
the variable (hence, the label Fixed Value) and searches for the
probability wheel setting that corresponds to the cumulative
probability of that variable value.
Subjective probabilities and decision weights

Many empirical findings caused behavioral decision theorists to
question the descriptive validity of the SEU model. Kahneman and
Tversky (1979) summarized many of these reservations in their
seminal paper on Prospect Theory (PT). Of special relevance for our
purpose is their critique of the ‘‘expectation principle’’. Kahneman
and Tversky (1979) showed that it is violated systematically,
and suggested that when making choices among risky prospects
DMs transform probabilities, p, into decision weights, W (p), that
are monotonic transformations of the probabilities ‘‘which reflect
the total impact of p on the overall value of the prospect’’
(Kahneman & Tversky, 1979). Originally, W (p) was characterized
by its key properties—sub-additivity, over-(under-)weighting of
low(high) probabilities, sub-certainty, and sub-proportionality.
Subsequently, various parametric functional representations have
been proposed. The function proposed by Tversky and Kahneman
(1992) is:

W1(p) =
pβ

(pβ + (1 − p)β)1/β
. (1)

The single parameter, β , determines the nature and magnitude
of the discrepancy between W1(p) and p, by capturing features
such as the curvature of the function and its elevation—the location
of the cross-over point (where W1(p) = p). The parameter of the
function may vary slightly across domains (Tversky & Kahneman,
1992, report median β = 0.61 for gains and median β = 0.69 for
losses) but there are large variations in the estimates across studies
(see Booij, van Praag, & van de Kuilen, 2010; Stott, 2006), as well as
between judges (see discussion by Gonzalez & Wu, 1999).

Although probability weighting has received a lot of attention
in behavioral decision theory, it has not affected the practice
of decision analysis to the same degree (see Abdellaoui, 2000;
Bleichrodt, Pinto, & Wakker, 2001, for exceptions). If DMs’
comparisons of the lotteries are driven by the principle underlying
PT, we can infer that:

Lottery on Event is (weakly) preferred to Lottery on Wheel Event
iff
W [SP(Event)] ≥ W [SP(Wheel)].

Since W (p) is a strictly monotonic function of p, when the two
subjective probabilities are converted into decision weights by
the same instantiation of the function (i.e., the same value of β),
decisionweights do not affect choices. However, if the two relevant
events are transformed at different rates, this is not necessarily
true. For example, consider two events, E1 and E2, and assume
that a certain person judges SP(E1) = 0.50 and SP(E2) = 0.60.
If the decision weight of E1 is determined by β1 = 0.8, but the
weight of E2 is determined by a more extreme β2 = 0.6, we obtain
W (SP(E1)) = 0.48 and W (SP(E2)) = 0.47. This would reverse
the judge’s overt preference, so our inferences about the judge’s
subjective probabilities would be inaccurate.

An obvious case where this could happen is when one of the
events is not transformed, i.e., W [SP(Event)] = SP(Event), and
the other is, but there could be other circumstances where the
probabilities of the two events would be transformed in different
ways. Essentially, the probability wheel is a well defined chance
event subject to purely aleatory uncertainty that is external to
the judge, whereas the target event is described verbally and is
governed by different sources of epistemic uncertainty that are
internal to the judge. Differential sensitivity to various types of
events was documented originally in a series of studies by Fox and
Tversky (1998) and Tversky and Fox (1995) and, more recently
by Abdellaoui, Baillon, and Wakker (2007) and Kilka and Weber
(2001). Wakker (2004) offered a general characterization of such
cases by suggesting that DMs are less sensitive to uncertainty than
to risk (Wakker, 2004, page 238).

The recent interest in the differential pattern of choices in de-
cisions from description and from experience offer new instances
where probabilities are weighted differentially. Papers by Hau,
Pleskac, Kieffer, and Hertwig (2008) and Ungenmach, Chater, and
Stewart (2009) suggest that the probability weighing functions are
different for decisions from experience and from description, and
Wu, Delgado, and Maloney (2009) have shown such differences
between various framings and presentation modes of, essentially,
equivalent decision tasks.

In this note we seek to determine the degree to which decision
weights could affect the practice of subjective probability encod-
ing. We present a general methodology for addressing this ques-
tion and illustrate it with two popular weighting functions over
the range of parameter values reported in the literature. We use
these analyses to (a) identify the circumstances under which overt
preferences for one lottery over the other are not affected by the
weighting function; (b) document themagnitude of the differences
between choices based on probabilities and their corresponding
weights in order to determine the severity of distortions in these
cases; and (c) draw somepractical recommendation for probability
elicitations.

We perform this analysis with both the one-parameter proba-
bility weighting function used by Tversky and Kahneman (1992),
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Fig. 1. Reversals with the one-parameter probability weighting function: β1 = 1.0 and β2 = 0.5 to 1 by 0.1. The shaded areas represent cases where applying the decision
weights reverse preferences.
and the two-parameter function proposed by Prelec (1998), where
δ controls its elevation and γ its curvature:

W2(p) = exp(−δ(− log(p))γ ). (2)

We do not necessarily claim any general superiority for these func-
tions (but see Stott, 2006), and use them only as illustrations.
The methodology used here can be applied to any other function
(e.g. Gonzalez & Wu, 1999; Rieger & Wang, 2006).
Analysis of the one-parameter weighting function

Let W1(p, βα) denote the value of the weighting function of
probability p under parameterization, βα , which can vary as a
function of the source of the uncertainty. We can identify the
range of values of β1, β2 that preserves the original order of the
untransformed probabilities, p1, p2. We define reversals as cases
where sign (p1 − p2) ≠ sign(W1(p1, β1) − W1(p2, β2)). The rate
of reversals for each relevant β1, β2 combination is the area of the
unit squarewhere the inequality holds. In practicewe estimate this
quantity as the fraction of (p1, p2) pairs (rounded to the nearest
0.01) for which we observe reversals.

Recent reviews by Booij et al. (2010) and Stott (2006) identified
8 papers in which estimates of the β parameter were reported in
the domain of gains. The median estimates from these papers are
between 0.56 and 0.96, and when the twomost extreme estimates
are eliminated the range is reduced to 0.60 ≤ β ≤ 0.91.
Consequently, we focus our analysis on the range 0.50 ≤ β1, β2 ≤

1.0.1 In support of this choice, note that 37 of the 44 individual
estimates (84%) reported by Budescu, Kuhn, Kramer, and Johnson
(2002) are also in this range.

1 Rieger and Wang (2006) point out that for low values of β this function is not
always monotonic (when β ≤ 0.28,W1(p) can be a decreasing function of p).
Fig. 1 displays results for the benchmark case where β1 =

1.0 (i.e., the first variable is not weighted), while β2 varies from
0.5 to 1.0 in increments of 0.1, for all pairs of p1 and p2 (the
plane of the plot). The background area of the plots represents the
consistent cases where the overt preferences are not affected by
the differential weighting. The shaded area, in the vicinity of the
diagonal, designates the cases where differential decision weights
induce reversals. This figure illustrates vividly (a) the dependence
of the rate of reversals and the discrepancy between the two βs
– as long as they are close (e.g., β2 > 0.7) reversals are negligible,
but they increase for larger discrepancies; and (b) their asymmetric
pattern – as long as β1 > β2 most reversals occur below the
diagonal where p1 < p2.

Fig. 2 displays similar results for the case where β1 = 0.75.
The figure shows that in the presence of a moderate degree of
distortion of one of the events (β1 = 0.75) the effect of theweights
is small, and shows up especially when the two probabilities
are close to each other (more on this later), and it increases
monotonically as a function of the difference |β2 − β1|. The order
reversals are not distributed symmetrically: Reversals are most
prevalent and more pronounced when β1 > β2, and occur mostly
when p1 < p2, just as in Fig. 1. The highest rate of violations
(14.4% of the various p1, p2 pairs) is observed when β1 = 0.75
and β2 = 0.50. In this case, over 95% of the order reversals are
below the diagonal where p1 < p2. Conversely, when β1 < β2
more reversals occur above the diagonal, where p1 > p2.
Analysis of the two-parameter weighting function

We now consider the two-parameter weighting function (Eq.
(2)) proposed by Prelec (1998). We distinguish between reversals
– caseswhere sign(p1−p2) ≠ sign(W2(p1; δ1, γ1)−W2(p2; δ2, γ2))
– and circumstances where sign(p1 − p2) = sign(W2(p1; δ1, γ1) −

W2(p2; δ2, γ2)), preserving the preference order implied by the
original probabilities. More specifically we seek the constraints
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Fig. 2. Reversals with the one-parameter probability weighting function β1 = 0.75 and β2 = 0.5 to 1 by 0.1. The shaded areas represent cases where applying the decision
weights reverse preferences.
on the δs, that control the functions’ elevations, and on the γ s,
that control their curvatures, to satisfy this constraint. If p1 > p2
invariance under differential weighting is achieved when:

δ1(− log(p1))γ1 > δ2(− log(p2))γ2 . (3)
This inequality can be mapped into a relationship between δ1 and
δ2 (assuming fixed γ ’s):

δ1

δ2
>

(− log(p2))γ2

(− log(p1))γ1
. (4)

Conversely, if one keeps δ1 and δ2 constant, it is possible to derive
the relationship between γ1 and γ2. When 1/e > p1 > 0,
log(− log(p1)) > 0, so

γ1 >
log (δ2) − log(δ1) + γ2 log(− log(p2))

log(− log(p1))
. (5)

On the other hand, when 1 > p1 > 1/e, and log(− log(p1)) < 0,
we have:

γ1 <
log(δ2) − log(δ1) + γ2 log(− log(p2))

log(− log(p1))
. (6)

The reviews by Booij et al. (2010) and Stott (2006) identified
4 papers reporting estimates of the two parameters of Prelec’s
function. The median estimates in these papers are such that
0.53 ≤ γ ≤ 1.05 and 1.0 ≤ δ ≤ 2.12. Based on these results,
we focus our attention to cases where 0.50 ≤ γ ≤ 1.0 and
1.0 ≤ δ ≤ 2.0. Fig. 3 examines the case where δ1 = δ2 = δ = 1
where both functions have identical elevations and illustrates the
effects of the differences in the curvatures of the two functions. To
illustrate the resultswe consider in Fig. 3 the casewhereγ1 = 0.75,
andγ2 ranges from0.5 to 1.0 in increments of 0.1. The effects follow
a pattern similar to the one-parameter function but are smaller
(The highest rate of violations for the case where δ = 1 is observed
in the upper left corner plot when γ1 = 0.75 and γ2 = 0.50).
Next we examine the case where both functions have identical
curvatures (γ1 = γ2 = γ = 0.8) and one of the elevations is
fixed at δ1 = 1.0. Fig. 4 displays the effects of the differences in
elevation by changing systematically the value of δ2. We consider
the case δ2 = 0.8 (upper left corner) and values of δ2 from 1.2
to 2.0 in increments of 0.2. These effects are much stronger than
those associated with the curvatures, and are easy to summarize:
their direction is determined by sign(δ2 − δ1) and their magnitude
increases as a function of |δ2 − δ1|: When |δ2 − δ1| = 0.2 (the left
column) we observe only 6.7% violations, but when we consider
extreme cases, such as the lower right corner where |δ2 − δ1| = 1,
order is reversed in 20.44% of the p1, p2 combinations.

Fig. 5 displays the joint effects of the two parameters. We use
as a reference a ‘‘typical’’ judge with γ1 = 0.9 and δ1 = 1.2. The
effects of different elevations are reflected in the changes across
the three rows (corresponding to δ2 = 1.0, 1.50 and 2.0), and the
effects of curvature are displayed in the changes cross the three
columns (corresponding to γ2 = 0.4, 0.7 and 1.0). As the overall
distance between the reference case and the alternative weighting
function increases (moving from the upper right to the lower left
panels), the rate of reversals increases. The pattern of reversals is
consistent with the special cases illustrated in Figs. 3 and 4.
When does probability weighting matter? A sensitivity analysis

The analysis in the previous section suggests that in most
cases preferences between pairs of events whose probabilities are
weighted differentially would be insensitive to the parameters
of the weighting functions. However, there are clear instances
of reversals, especially when the two probabilities are close to
each other, so it is natural to ask whether these cases are of
practical relevance and importance. Given the many possible
functions (e.g. Stott, 2006), and their high non-linearity it is
impossible to offer a simple unequivocal answer to this question.
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Fig. 3. Effects of curvature for the two-parameter probability weighting function δ = 1, γ1 = 0.75, γ2 = 0.5 to 1 by 0.1 The shaded areas represent cases where applying
the decision weights reverse preferences.
Table 1
Distribution of reversals for the case |β1 − β2| = 0.10, as a function of the parameters of the weighting functions (β1, β2).

(β1, β2) or (β2, β1) Overall reversal rate Relative reversal rate Proportion of cases where |p1 − p2| ≤

0.05 0.10 0.15

0.50, 0.60 0.079 0.282 0.48 0.84 0.98
0.55, 0.65 0.057 0.204 0.61 0.97 1.00
0.60, 0.70 0.041 0.147 0.76 1.00 1.00
0.65, 0.75 0.031 0.110 0.90 1.00 1.00
0.70, 0.80 0.023 0.083 1.00 1.00 1.00
0.75, 0.85 0.018 0.063 1.00 1.00 1.00
0.80, 0.90 0.013 0.048 1.00 1.00 1.00
0.85, 0.95 0.010 0.035 1.00 1.00 1.00
0.90, 1.00 0.008 0.029 1.00 1.00 1.00
Overall N = 5440 0.73 0.95 1.00
The answer depends on the interplay between the desired, or
expected, resolution of the probability elicitation process, and the
dissimilarity between the two weighting functions. In this section
we offer two sensitivity analyses driven by these factors. Our main
goal is to characterize circumstances where differential weighting
can make a difference.

There is ample empirical evidence that when judges provide
numerical probability judgments pertaining to graphical displays
(e.g. Budescu, Weinberg, & Wallsten, 1988), or general knowledge
of historical or geographical facts (e.g. Wallsten, Budescu, & Zwick,
1993) most subjective probabilities reported are multiples of 0.10
or 0.05. In other words, the resolution of probability judgments
involves at most 21 levels and for many judges as few as 11
categories. Thus, events whose probabilities are within 0.05 of
each other are, essentially, indistinguishable, but it makes sense
to expect good differentiation between events whose probabilities
are 0.10 apart. We consider reversals involving probabilities that
are 0.15 (or more) apart as unacceptable. Unfortunately, we do not
have enough good quality data to quantify the ‘‘typical’’ difference
between the parameters of various weighting functions, so we
examine a wide range of values.

We use the one-parameter weighting function (see Eq. (1)) in
this illustration. We examined all pairs of probabilities, p1p2, in
the unit square [0, 1] and used all parameter pairs (rounded to the
nearest 0.05) in the relevant range β1, β2 ∈ [0.5, 1] to identify all
the cases where differential weighting induced reversals.2 Tables 1
and 2 summarize the results for cases where |β2 − β1| =

0.1 and 0.2, respectively. In each case we examine separately all
relevant pairs of β1 and β2. The first data column in each table

2 For the purpose of these analyses all the probabilities (p1,p2), the weights
(w(p1), w(p2)), and the differences between them are rounded to 2 significant
digits.
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Fig. 4. Effects of elevation for the two-parameter probability weighting function γ = 0.8, δ1 = 1, δ2 = 0.8 and 1.2 to 2.0 by 0.2. The shaded areas represent cases where
applying the decision weights reverse preferences.
Table 2
Distribution of Reversals for the case |β1 − β2| = 0.20, as a function of the parameters of the weighting functions (β1, β2).

(β1, β2) or (β2, β1) Overall reversal rate Relative reversal rate Proportion of cases where |p1 − p2| ≤

0.05 0.10 0.15

0.50, 0.70 0.123 0.270 0.33 0.60 0.81
0.55, 0.75 0.093 0.205 0.42 0.73 0.94
0.60, 0.80 0.071 0.157 0.52 0.86 1.00
0.65, 0.85 0.056 0.123 0.64 0.97 1.00
0.70, 0.90 0.045 0.099 0.75 1.00 1.00
0.75, 0.95 0.036 0.080 0.87 1.00 1.00
0.80, 1.00 0.030 0.065 0.96 1.00 1.00
Overall N = 8830 0.54 0.81 0.94
presents the global rate of reversals for eachβ1, β2 pair. The second
data column, labeled relative reversal rate, list what proportion of
all the observed reversals (out of the 5400 reversal for |β2 − β1| =

0.1 and the 8830 cases for |β2−β1| = 0.2) are associatedwith each
combination of parameter values. The next three columns show
the cumulative distributions of reversals, conditional of the given
β1 and β2, at |p2 − p1| ≤ 0.05, 0.10 and 0.15, respectively.

Both tables show that both the global and the relative reversal
rates decrease as the parameters (β1, β2) approach the β =

1 benchmark. In fact they are small, and negligible, as long as
min (β1, β2) > 0.75. Table 1 shows that with a 10% tolerance
for reversals due to weighting (which maps into a Kendall τ

rank-order correlation of 0.80) (a) it is always possible to obtain
resolution for cases where |p2 − p1| = 0.15, (b) almost always
possible to achieve resolution when |p2 − p1| = 0.10 (the only
exception being the case where β1 = 0.5 and β2 = 0.6), and (c)
obtain very high resolution if |p2 − p1| = 0.05 if Max (β1, β2) =

0.75. Table 2 shows that with more dissimilar functions, where
|β2 − β1| = 0.2, resolutions of |p2 − p1| = 0.15, 0.10 and 0.05
are obtainable, as long as Max (β2, β1) = 0.70, 0.80, and 0.95,
respectively.

An alternative sensitivity analysis, conditioned of the difference
between the two probabilities, is presented in Figs. 6 and 7. We
used, again, the one-parameter function (Eq. (1)) as an illustrative
tool, and we calculated the rate of reversals for all pairs of
probabilities, (p1, p2), in the unit square [0, 1] for a wider range of
parameters and summarized them as a function of the difference
between the two probabilities, (p1 −p2). In each figure we fixed β1
(β1 = 1 in Fig. 6 and β1 = 0.75 in Fig. 7) and examined all values
of β2 ∈ [0.40, 1.60]. Each plot shows 4 curves corresponding to
(p1 − p2) = −0.10, −0.05, 0.05, and 0.10, as a function of β2.

Consider first Fig. 6 that pertains to the case where p1 is not
transformed (β1 = 1). Note that even for probabilities that
are highly similar there are large ranges of β2 (in the vicinity of
β1) without any reversals. For example, the original ordering is
preserved for (p1 − p2) = −0.05 as long as 0.86 ≤ β2 ≤ 1.20,
for (p1 − p2) = −0.10 as long as 0.74 ≤ β2 ≤ 1.46, and for
(p1 −p2) = 0.05 as long as 0.68 ≤ β2. If one is willing to tolerate a
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Fig. 5. Joint effects of elevation (rows) and curvature (columns) for the two-parameter probability weighting function with γ1 = 0.9, δ1 = 1.2, γ2 = 0.4 to 1.0 by 0.3, and
δ2 = 1.0 to 2.0 by 0.5. The shaded areas represent cases where applying the decision weights reverse preferences.
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Fig. 6. Rates of reversals with the one-parameter probability weighting function
when β1 = 1 as a function of β2, for selected values of (p1 − p2).

relatively low rate of reversals (e.g. 10%) these ranges of invariance
are slightly wider, but not by much.

Fig. 7 focuses on the case where β1 = 0.75, so there is a
considerable degree of distortion in p1. Although the rate of change
in the rate of reversals is steeper and the tolerance ranges aremore
asymmetric (compared to Fig. 6), the basic pattern is similar. For
example, the original ordering is preserved for (p1 − p2) = −0.05
as long as 0.60 ≤ β2 ≤ 0.94, and for (p1 − p2) = 0.05 when
0.54 ≤ β2 ≤ 0.82.
Final remarks

The standard methods for eliciting subjective probabilities in
decision analysis (see Spetzler & Staël von Holstein, 1975; Wall-
sten & Budescu, 1983) predate the development of the probability
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Fig. 7. Rates of reversals with the one-parameter probability weighting function
when β1 = 0.75 as a function of β2 , for selected values of (p1 − p2).

weighting function. When finding the point of indifference be-
tween the setting of the generic probability wheel and a value of
the variable of interest (temperature, currency exchange rate, etc.)
we infer that the probability on the wheel represents the cumula-
tive probability of the value of the variable. This analysis implicitly
assumes that the two probabilities – the one on the wheel and the
one from the distribution of the variable of interest – affect choices
identically.

The purpose of this paperwas to provide a generalmethodology
for analyzing the potential magnitude of the effects induced by the
differential weighting transformations.

Using two popular functional forms of the weighting function
as illustrative examples, we examined the behavior over all
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possible values of probabilities and over reasonable subsets of
their parameter space, as implied by the two recent review papers
(Booij et al., 2010; Stott, 2006). The general method developed in
this paper can be easily applied with other weighting functions
(e.g. Gonzalez & Wu, 1999; Rieger & Wang, 2006) and on other
regions of their respective parameters’ space.

Our results suggest that in most cases the choices based on
differential weighting (within the ranges considered) are consis-
tent with choices assuming identical weighting functions. It fol-
lows that the elicited subjective probability functions would be
quite insensitive to the shape and parameter of theweighting func-
tions. We were also able to show regions where inconsistencies
may occur—mainly in a narrow region around the diagonal of each
plot, corresponding to probabilities that are quite similar. Our sen-
sitivity analysis confirms that the vastmajority of reversals involve
extreme non-linear weighting of similar probabilities.

We asked whether probability weighting functions affect
probability elicitation. At the end of the day, the answer depends
on one’s expected resolution, tolerance for errors due to reversals,
and the exact nature of the actual weighting transformations. In
our view it is sensible to rely on the judges’ stated preferences
and it is possible to estimate their subjective probabilities with
reasonable resolution (e.g., |p2 − p1| ≤ 0.10) and tolerable
levels of error (≤10%) without worrying about the effects of the
weighting functions, as long as these transformations are not
too extreme. However, we recognize that different people under
various circumstances may wish to apply different criteria and
may not accept this interpretation. The general method proposed
in this paper can be applied with different evaluation criteria
(e.g., different expectations about the judgments’ resolution and
other (stricter or looser) levels of tolerance for error).

This analysis of the effects of probability weighting during the
encoding process highlights the need for more empirical research
designed to examine and quantify the degree to which different
sources and types of uncertainty, as well as various devices,
settings, elicitation procedures, instructions, incentives, etc. can
affect the shape (parameters) of the weighting functions over the
relevant range of values and probabilities. The work by Gonzalez
and Wu (1999), Hau et al. (2008) and Wakker (2004) provides
promising starting points for such future investigations.
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